lUNCONVENTMNAL

RESOURCES TECHNOLOGY CONFERENCE
0} FUCLED BY GPE = AAPG - 5EEG

URTeC: 2994

Artificial Intelligence for Production Optimization in Unconventional
Reservoirs

Oscar Molina*, Camilo Mejia, Jerry Webb, and Rebecca Nye, Enovate Upstream

Copyright 2020, Unconventional Resources Technology Conference (URTeC) DOI 10.15530/urtec-2020-2994

This paper was prepared for presentation at the Unconventional Resources Technology Conference held in Austin, Texas, USA, 20-
22 July 2020.

The URTeC Technical Program Committee accepted this presentation on the basis of information contained in an abstract submitted
by the author(s). The contents of this paper have not been reviewed by URTeC and URTeC does not warrant the accuracy, reliability,
or timeliness of any information herein. All information is the responsibility of, and, is subject to corrections by the author(s). Any
person or entity that relies on any information obtained from this paper does so at their own risk. The information herein does not
necessarily reflect any position of URTeC. Any reproduction, distribution, or storage of any part of this paper by anyone other than the
author without the written consent of URTeC is prohibited.

Abstract

This work presents two cases for the application of artificial intelligence (Al) techniques as complementary
tools to classic physics-based modeling. On the one hand, we discuss the benefits from the implementation
of an Al-assisted non-linear solver, especially designed for analytical simulation of multi-fractured hori-
zontal wells, that led to obtaining fast simulation results, this way opening an avenue for the use of reservoir
simulations for type-well analysis in unconventional reservoirs.

On the other hand, we introduce the application of Al for drilling, more specifically, optimization of
the rate of penetration (ROP). In both cases, we used data from offset wells to better understand the char-
acteristics of the target formation, pinpoint opportunities for ROP optimization, and identify key production
drivers to determine their impact on short and long-term production. In this manner, we are able to generate
physically meaningful production forecasts.

In this paper, we examine the results from the application of the proposed Al methods to a field case
study for a type-well study in the Lower Eagle Ford formation. Analysis of results show the importance of
accounting for static reservoir properties and completion properties to generate accurate production fore-
casts. Similarly, we observe that the introduction of artificial neural networks (ANN) as a means for ROP
optimization, using offset wells data, allowed to generate optimized drilling schedules to be used for drilling
infill wells in the area of interest.

Introduction

In recent times the shale oil & gas industry has been tremendously impacted by a number of factors which
have led to a market volatility in recent years. Among these factors, steep production declines (Hughes,
2013), the lack of physics-based modeling of using decline curve analysis (DCA) methods in multi-frac-
tured horizontal wells experiencing very long transient flow (Belyadi and Yuyi, 2015), and the uncertainty
of determining estimated ultimate recovery (EUR) from unconventional reservoirs with such methods
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(Wang, 2017). Altogether, these factors have whooshed away investors thus deepening the economic crisis
on the shale industry (e.g. Cunningham, 2020; Elliot, 2019).

In addition to market volatility, the financial crisis induced by the current global pandemic of COVID-
19 makes it challenging for most E&P companies to maintain the levels of production operations observed
earlier this year, when oil price was poised to rebound. Consequently, long-term financial performance of
shale oil and gas projects have also been compromised by this external factor (Ozili and Arun, 2020). From
a micro-economics perspective, the unconventional oil and gas markets’ lack of focus on the return of
investment may be deemed as one of the main culprits for their current financial struggle. Operational
efficiency in US unconventional reservoirs has reached higher levels compared with conventional reser-
voirs (Dickson, 2019). However, the steep decline in shale oil production remains as one of the key chal-
lenges to tackle in order to ensure financial stability, at least from the petroleum economics side.

Digital technologies with a focus on integrated digitalization across the upstream value chain and
workflow automations are part of the steps forward for the industry (Lu et al., 2019). As a consequence,
remote operations, digitalization, reservoir and production automation, plus a focus on the return of invest-
ment, are the main components driving the application of modern technologies like cloud-based computing,
artificial intelligence, and automated workflows.

In this paper, we introduce the application of a cloud-based, Al-driven digital ecosystem for optimi-
zation in the upstream value chain. The central component of this digital ecosystem is the ability to reliably
forecast production from type wells using physically meaningful parameters, such as static reservoir prop-
erties, completion properties, and, more importantly, production history from offset wells. Understanding
production drivers from a target formation allows to properly determine the technical production limits
from type wells, which delivers a more realistic production expectancy hence petroleum economics, with-
out the need for physics-less DCA-based predictions. Two components of the workflow, namely production
forecasting and ROP optimization, are implemented for a field case study in the Lower Eagle Ford. Figure
1 illustrates the integrated production enhancement and optimization approach discussed herein.

Unlike typical reservoir engineering workflows based on DCA, our starting point was the assessment
of the technical limits for well performance in the target reservoir. This was achieved by creating a physics-
based type-well study, focused on using historical production data from offset wells in the same area and
formation to extract static reservoir properties and stimulated rock volume (SRV) properties by means of
history-matching a physics-based reservoir simulation tool with field observations.

Following this approach, we were able to identify key short and long-term production drivers and
determine their impact on expected well productivity. More importantly, the use of calibrated (i.e., history-
matched) reservoir models for creating the type well ensures that production forecasts generated with the
type well are realistic and represent the physics of fluid flow in the target formation. Sensitivity analysis of
well production to variation in calibrated properties yields the expected technical production limits of the
area of interest. Production data is presented in a normalized fashion in this work.

Once the technical production limits and production drivers have been properly identified, other as-
pects of the upstream value chain can be optimized. For instance, if a type-well analysis suggests that static
shale (tight) reservoir properties are the most impactful drivers at mid-to-late times, then drilling engineers
should focus their optimization strategy on increasing ROP while reaching production sweet spots, i.e.,
streaks of high porosity and high permeability in the target reservoir. This way, while the workflow assumes
average static reservoir properties, this is not the case for drilling optimization therefore a tailor-made geo-
steering program, paired up with an ROP-optimized schedule, is expected to deliver the best results from
the operational and economical standpoints.

This paper is divided as follows: the first part discusses the collection of static reservoir properties in
preparation for the construction of the type-well analysis. Rock and fluid properties and correlations, in-
cluding pressure-dependent permeability to simulate geomechanics effects on production, are discussed in
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this section. Next, we shift the focus to completions design where we examine the collection of typical
completions design for wells in the region of interest and utilize the 2-D Perkins-Kern-Nordgren (PKN)
fracture propagation model to determine average fracture dimensions for the fracturing fluids commonly
used by the operator. Here, we considered a material-balance approach to estimate fracture dimensions
assuming the same fracture geometry in all fractured stages.

Real-time Al-assisted
Decision-making

(5]

Cloud-based Environment

Type-well Analysis

Petroleum Economics o
-( (Al-assisted)

Completions Design o

[ 2 ) Drilling Optimization
(Al-driven, Physics-based)
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Figure 1. Integrated production enhancement and optimization workflow

After this section, we introduce the analytical multi-fractured horizontal well model used for reservoir sim-
ulations and examine the simulation workflow implemented in the present work, which includes the intro-
duction of an Al-assisted convergence acceleration tool which also maintains the nonlinear solution process
numerically stable. Later, we compare the history-matching results obtained for an offset well using the
variable-rate and smoothly decaying bottomhole flowing pressure (BHFP) models. Calibrated reservoir and
completion properties are then used to construct the type well and perform sensitivity studies to determine
its technical production limits. Finally, we have a brief discussion about the application of Al methods,
more specifically ANN, for ROP optimization, based on drilling data from several offset wells in the area.

Reservoir Characterization

The first and, arguably, the most important step towards production optimization within the cloud-based
framework shown in Figure 1 is the identification of the key production drivers in the target zone and
understanding their influence in short and long-term production. These parameters may include static res-
ervoir properties, reservoir fluid type and thermodynamic behavior, as well as completion design and effi-
ciency. Because of the multi-variate nature associated with reservoir characterization, we aimed at reducing
uncertainties, particularly for static reservoir properties, by virtue of cross-validating geological and petro-
physical information and logs from offset wells, provided by the operating company, against publicly avail-
able data sources.

Reservoir Thickness. Static reservoir data from offset wells, in the area of interest, indicated an average
pay thickness of 104 ft whereas an isopach map of the Eagle Ford shale shown in Figure 2 (EIA, 2014)
suggests that pay thickness varies between 75 and 150 ft across northwestern Karnes County. The exact
location of the objective wells allowed us to narrow down this range and we concluded that a net pay
thickness of 144 ft would be representative of the target zone in the lower Eagle Ford formation. Compli-
ance effects were not considered in this study.
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Figure 2. Thickness contour map of the Eagle Ford shale (EIA, 2014)

Matrix Porosity and Permeability. Determining porosity and permeability of the target formation was not
as straightforward as pay thickness. E&P operator’s knowledge on static reservoir properties of the Lower
Eagle Ford in the Karnes County was principally obtained from petrophysical logs and porosity-permea-
bility correlations. Nonetheless, the probabilistic nature of static reservoir properties was evident, therefore
we were not able to assign specific values for them. Instead, we determined probable ranges within which
typical values of porosity and permeability were observed to lie within. In consequence, we established that
matrix porosity varies between 4% and 10% while matrix permeability ranges from 50 to 500 nd (1 nd =
1E-6 md), both at initial pore pressure conditions.

Initial Reservoir Pressure. Reservoir data from offset wells indicate that the region of interest in the Lower
Eagle Ford is likely overpressured so that pore pressure gradient is significantly above the hydrostatic gra-
dient. According to EIA (2014), pressure gradient in the Eagle Ford shale ranges from 0.5 to > 0.8 psi/ft.
Given the depth of the target zone (~11200 ft), the initial pore pressure would lie between 5600 and 8900
psi. The pressure map shown in Figure 3 (Gherabati et al., 2016) suggests that pore pressure in the Karnes
County lies between 7500 and 8500 psi. To be consistent with all sources of information, we use 7500 psi
as the initial pore pressure in this study.
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Figure 3. Average pore pressure in the Eagle Ford shale (Gherabati et al., 2016)
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The fact that the reservoir section under study is over-pressured raises the need to accounting for the impact
of large pressure drawdown on porosity and permeability. As such, we implemented the classic exponential-
law model to model porosity as a function of pressure (Dake, 1983):

¢ = q_')ie—cr(pi—p) (1)

where ¢; is porosity at initial pressure p; [psi] and ¢, [1/psi] rock compressibility. Though a value range
for ¢, for the Eagle Ford is not commonly found in the literature and/or would require specialized experi-
mental testing, we use ¢, = SE-6 1/psi (e.g. Chaudary et al., 2011). A similar pressure-dependent permea-
bility correlation was introduced into the reservoir model to incorporate geomechanics effects (Yilmaz and
Nur, 1985):

k=k; e~ Y@i-p) )

where k; is matrix permeability at initial pore pressure and y [1/psi] permeability modulus. Similar to matrix
rock compressibility, value ranges for y are rather difficult to obtain without proper laboratory data of the
matrix rock under study. However, data from the literature shows that 1E-4 <y < 5E-4 1/psi is a typical
range for fractured rocks in major tight oil and gas basins across the US (Yao et al., 2015; Abass et al.,
2009; Zhang et al., 2014). Therefore, we considered the case of low, moderate, and high geomechanics
effects with y = 1E-4, 2.5E-4 and 5E-4 1/psi, respectively.

Fluid Type and PVT Properties. We analyzed historic production data from offset wells in order to deter-
mine the type of reservoir fluid following the typical reservoir fluid characterization (McCain, 2017). In
particular, this part of the study focuses on production data from the offset well OW-1. Figure 4a shows
the cumulative oil and gas production from OW-1, normalized by their respective minimum monthly pro-
duction. Notice that oil and gas production are almost proportional, which is typical of above-bubble-point-
pressure producing conditions. The average producing gas-oil ratio (GOR) this well is 1421.67 scf/STB,
which suggested we were dealing with a black-oil reservoir. This conclusion is supported by Gong (2013),
as illustrated in Figure 4b.
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Figure 4. Reservoir fluid characterization in the area of interest in Karnes County, south Texas

Because oil had been produced at above-bubble-point pressure conditions, we used the exponential law
formulation to describe variations in oil formation volume factor with pressure (Dake, 1983):
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B, = B,;eco®i~P) 3)

where B,; [bbl/STB] is the oil formation volume factor at initial reservoir pressure p; [psi]. Eq. (3) applies
when p is equal or greater than the bubble-point pressure p,, [psi], which ranges from 2000 to 3800 psi in
the area of interest (Gong, 2013; Yusuf, 2016; Gherabati et al., 2016). In addition, oil compressibility is
assumed constant. Moreover, oil viscosity was assumed constant. Table 1 summarizes the PVT properties
used for production data analysis in this work.

Table 1. Typical Oil PVT Properties, Eagle Ford Shale (Karnes County)

Reservoir fluid type Black oil
API gravity 42
Initial oil formation volume factor, ¢, [rb/STB] 1.3513
Oil compressibility, ¢, [1/psi] 4.8E-6
Initial oil viscosity, u, 0.549
Solution gas-oil ratio (GOR) [scf/STB] 1400

Contrary to produced gas volume, monthly oil production is rigorously booked therefore we focused our
history-matching and model calibration efforts on oil production.

Well Completion Design

Similar to the workflow implemented to determine/estimate static reservoir properties and fluid properties,
we collected information about completion design of offset wells in the area of interest and established a
baseline for completion properties of the type well. While average stage spacing was found to be 200 ft,
average fracture dimensions had to be either taken from the literature or estimated using fracture propaga-
tion models.

According to the E&P operator, the typical fracturing job size has an average pumping rate of 35 bpm
for 45 minutes (per cluster), with a total of 5 clusters per stage. Additionally, the operator typically uses
two different fluid formulations (Newtonian and Non-Newtonian). Moreover, we used petrophysical cor-
relations to estimate Young’s modulus and Poisson’s ratio, E = 6.38E+6 psi and v = 0.195, respectively.
We further undertake isotropic geomechanics properties and fracture-height-to-pay-height ratio , = 1.1,
equivalent to 10% vertical fracture growth.

Based on this information, we implemented a nonlinear material balance for the PKN model (Smith
and Montgomery, 2015) to estimated average fracture dimensions while considering 100% fracture growth
efficiency; that is, we neglected stress shadowing and compressional and tectonic effects. Calculation re-
sults for fracture dimensions using the PKN model for a single-cluster stage are summarized in Table 2.

Despite petrophysical and geochemistry data from offset wells was readily available, the E&P oper-
ator decided to continue utilizing a geometric completion design. Therefore, we considered a geometric
stage design for the type well. Thus, all fractured stages were assumed to have equal dimensions and com-
pletion characteristics, such as stimulation efficiency. Furthermore, although these results are compatible
with other studies in the literature (e.g. Gong, 2013), detailed completion information was not immediately
available for OW-1. Therefore, we reckoned that 400 ft fracture half-length was a conservative number for
the type-well study, given that well spacing in future multi-well pads in the field of interest may become
tighter than in legacy pads in the area.
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Table 2. Fracturing Fluid Properties and Resulting Average Fracture Properties

. . Flow consistency in- Flow behavior index Fracture half-length Average fracture
Fracturing fluid type dex (K, CP_Sn-1) (n) (ft) width (ft)
Newtonian 200 1 665.39 0.01632
Non-Newtonian 200 0.75 636.62 0.01841

Multi-fractured Horizontal Well Model

We used the five-region flow (FRF) model (Stalgorova and Mattar, 2013) as the reservoir model to history-
match production data from OW-1, generate production forecasts for the type well, and create sensitivity
studies to determine the impact of reservoir and completion properties on early and late-time production.

The FRF model was developed on the basis that fluid-flow from the matrix into the wellbore can be
simplified as a combination of five different linear flows along with a choking skin damage due to flow
convergence from the fracture into the wellbore (Stalgorova and Mattar, 2013; Brown et al., 2011). Frac-
tured stages in the FRF are modeled as a composite system comprised of unstimulated rock (regions 2, 3,
4), stimulated rock (or reservoir) volume (Mayerhofer et al., 2010), and a planar fracture (region F), as
shown by Figure 6.
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Figure 5. The five-region flow (FRF) model (Stagorova and Mattar, 2013)

The FRF model is an industry-standard model and, as such, it is commonly found in most commercial rate-
transient analysis (RTA) software. Generally, two different versions are available: analytical and numerical.
Despite its computational efficiency, the analytical FRF model has limited application because of the in-
herent restrictions of analytical solutions. Conversely, the numerical FRF model is very flexible and can
override many of the assumptions of the analytical model, such as symmetric domain, constant rock prop-
erties, equal fractured stages. However, it is more computationally expensive henceforth, depending on the
scope of the project, running recurrent numerical simulations may be restrictive.

For this study, we used Enovate Upstream’s proprietary analytical version of the FRF model code-
named ADA FALCON. This software was developed based on the original FRF model; however, it ac-
counts for pressure-dependent rock and fluid properties without the need for using pseudo-functions to
linearize the fluid-flow model. Instead, ADA FALCON includes a fast-nonlinear solver (FNS) (Molina,
2019) powered by a proprietary Al technology to accelerate convergence rates while ensuing numerical
stability.
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In this manner, we were able to obtain simulation results within seconds, even when we accounted
for geomechanics effects acting on one or various regions, which is widely recognized as a factor that slows
down numerical simulation times significantly due to the requirement of fine meshes and small timesteps.

Figure 6 illustrates the reservoir simulation workflow implemented in this work. The reservoir engi-
neering study started with the analysis of production data from well OW-1 as well as static reservoir and
completions properties in the area of study. Rock and fluid correlations were part of this initial stage. This
information was fed into the analytical reservoir simulation model whose equations were solved by Eno-
vate’s proprietary fast nonlinear solver. The process was repeated until a satisfactory match was found. At
this point, calibrated reservoir and completion properties were used to construct the type well model and
physics-based probabilistic production forecasts are generated using the same reservoir simulator. Note that
production drivers are identified as a result from the probabilistic (or sensitivity) analysis.

Offset wells data

Production history Static reservoir properties

Fluid properties (PVT)
Geomechanical models
(porosity, permeability)
Completion design Reservoir simulation model N

+ Physics-based

Aliechnciogy E Fast nonlinear solver E @model
EI‘@’ ATE E optimization i parameters
[ = = e

No

Production
drivers

+ Type-well analysis Probabilistic production forecast

Figure 6. The five-region flow (FRF) model (Stagorova and Mattar, 2013)

Reservoir Model Validation

We considered two approaches for the reservoir model calibration process: variable-rate and smoothly de-
caying BHFP conditions (Fuentes-Cruz and Valko, 2015). Both models utilized actual production data from
well OW-1. The calibration process was successfully achieved through fine-tuning reservoir properties and
completion properties until a satisfactory match was found. Figure 7 shows the history-matching results
for the production history of well OW-1. Figure 7a compares analytical modeling results against actual
production rates and cumulative production history. As it can be seen in this plot, the analytical model
accurately captures production behavior up to the last data entry, which is ~4 years.

It is worthwhile to mention that bottomhole pressure data was not available for this study. Thus, to
ensure the accuracy of the calibration process, we carried out variable-rate simulations, using production
data as inputs, to generate the expected pressure response for a given model. Then, we used this synthetic
pressure response to generate the rate and cumulative production response. This iterative process was per-
formed until we found a satisfactory match between the model and production history. For simplicity, we
simply refer herein to the whole process as variable-rate model calibration. With respect to the BHFP used
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to generate the production forecast, we held the last synthetic flowing pressure constant. Relevant calibrated
reservoir model properties are summarized in Table 3. We considered fully stimulated fractured stages (i.e.
100% stimulation efficiency) for this analysis and geomechanics effects were neglected. Note that the cal-
ibrated fracture half-length is in close agreement with those values estimated by the PKN model (Table 2).
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Figure 7. Model calibration for well OW-1 with variable-rate conditions (normalized production data are
shown as symbols)

Table 3. Calibrated Reservoir Model Properties for Well OW-1

Reservoir pressure 7500 psia
Formation thickness 144 ft
Matrix porosity 8%
Matrix permeability 200 nd
Fracture half-length 660 ft
Fracture conductivity 200 md-ft
SRV permeability 850 nd
Bubble-point pressure 2000 psia
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Daily rates and cumulative production for # > 1450 days, shown in Figure 7a, were generated by the reser-
voir model. Simulation results allowed us to conclude that OW-1 is positioned as one of the best performers
in the area of study. According to Figure 7b, OW-1 is likely undergoing apparent boundary-dominated
flow, that is, transitional flow from the SRV into the matrix. Notice the distinctive unit-slope trend exhibited
by the rate-normalized pressure and its log-derivative. Therefore, one should expect that matrix properties
would dominate well productivity during this stage of its productive life. Realize that this type of conclu-
sions cannot be drawn by virtue of DCA methods.

Likewise, the specialized square-root material-balance time plot in Figure 7c¢ indicates that transient
linear SRV flow effects are relatively long-lived, compared to actual normalized production data. Note that
most of the data lies within the linear trend within 0 and 50 days'? (square-root material-balance time).

Similarly, we found a good match between observed field data and the analytical model for the case
of smoothly decaying BHFP, as illustrated by the collage in Figure 8. For this scenario we utilized a stabi-
lized exponential function for BHFP which starts at initial pressure and drops exponentially to the desig-
nated terminal BHFP (Fuentes-Cruz and Valko, 2015), which was set to 2200 psi. Furthemore, we chose
the stabilization time to be 1 year. Reservoir and completion properties for this reservoir model were taken
from those calibrated with the variable-rate model. Recognize that the difference between approaches is
minimal thus confirming that the calibrated properties are physically sound.
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Figure 8. Model calibration for well OW-1 with an equivalent smoothly decaying BHFP
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From the analysis of results in this section, we conclude that the five-region model, paired up with the fast
nonlinear solver from ADA FALCON, is a powerful tool that supersedes DCA-type methods and enables
reservoir engineers to get a broader picture of the physics and the influence of static and dynamic reservoir
properties on model calibration and production forecast, as discussed in the next section. Moreover, note
that reservoir and completion can be characterized with the help of calibrated models for use in type-well
studies; this is not, by any means, achievable with DCA methods, at least for unconventional reservoirs.

The Need for Probabilistic Analysis

Reservoir engineers typically rely on forward and inverse reservoir modeling to calibrate reservoir proper-
ties of interest, useful for both diagnostics and production forecast (Oliver et al., 2008). On the one hand,
forward models typically consider the reservoir model to be fully determined a priori, such that transient
pressure and/or rate response is the outcome of the simulation process. On the other hand, transient pressure
and/or rate response are typically known a priori in inverse models; however, the reservoir model and as-
sociated properties are initially unknown (Spivey and Lee, 2013).

In general, inverse models suffer from the problem of non-uniqueness (Spivey and Lee, 2013). In
essence, this issue is related to the fact that several, if not many, reservoir models can reproduce the same
expected response, in this case well production history. Due to this problem, inverse reservoir modeling
typically involves the interaction of staff from various disciplines including geology and geophysics, engi-
neering, and operations, with the final goal to gather as much data as possible in order to reduce uncertain-
ties related to static and/or dynamics reservoir properties and completions characteristics.

Figure 9 illustrates an example of non-unique solutions for well OW-1. Realize that three different
reservoir models—Model 1: base case (calibrated model); Model 2: low matrix permeability; Model 3: high
SRV permeability—gave very similar decline rates and cumulative production curves. Nevertheless, pro-
duction forecast curves depart from one another shortly after the last historical data entry. Thus, we found
that it is more physically sound to define EUR as a range rather than a fixed value. Since most static reser-
voir properties are inherently probabilistic, due to anisotropy and heterogeneity, and, in other occasions,
due to drilling out of zone, this type of analysis seemed prevalent for this study.

Despite the minimal variability in normalized EUR observed in Figure 9 (+ 5%), Markov-Chain
Monte Carlo simulations are needed to get a better picture of this variability (Sureshjani et al., 2020). This
type of analysis is part of the future plan for this work. We instead ran a sensitivity study in the next section.
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Figure 9. Probabilistic production forecasting and EUR estimation for well OW-1
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Type-Well Analysis

Type-well production forecasts are derived for smoothly decaying BHFP conditions. Average daily oil rates
and cumulative production are given at standard conditions using downhole conditions as the reference
state. Since we used BHFP instead of wellhead flowing pressure as the pressure of choice for the reservoir
model, the oil formation volume factor should take care of downhole-to-surface conditions as oil production
takes place at above-bubble-point pressure conditions. Moreover, the requirement of a constant BHFP gen-
erally requires that an artificial lift system (ALS) be in place and running to sustain constant pressure flow-
ing conditions; however, design and selection of ALS is out of the scope of this study.

In the following sensitivity analyses, we used the calibrated reservoir model as the based case and
then varied several properties of the model in order to obtain different decline rates and cumulative produc-
tion curves which allowed us to generate production envelopes, as discussed in the previous section. More
specifically, we discuss the early and late-time impact of such variability in reservoir and completion prop-
erties. Decline rates and cumulative productions are normalized by the highest value obtained from the
reservoir simulation model for the base line model (i.e. calibrated model).

Impact of Matrix Properties. The impact of matrix porosity and permeability on productivity of the type
well is illustrated by the normalized rate and normalized cumulative envelopes in Figures 10a and 10b,
respectively. Notice that both reservoir properties would can impact late-time cumulative production hence
EUR of the type well. In particular, notice that underestimating porosity would diminish EUR by 5%, as
shown in Figure 10a; however, a slight increase in matrix porosity can lead to a 22% overestimation of
EUR. The impact of matrix permeability, although noticeable at late times, is not as severe as that of po-
rosity, even for one order-of-magnitude variation in this property.

From Figure 10b, we can conclude that permeability alone can induce a £5% variability in EUR esti-
mations. More importantly, be aware that none of these conclusions could be drawn by focusing on the
decline rate curves alone. Finally, recognize that the impact of matrix properties on well performance ap-
pears at late production times, which is consistent with the physics of fluid flow in tight reservoirs.
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Figure 10. Impact of matrix properties on type-well performance: (a) porosity and (b) permeability

Impact of Completion Properties. In this analysis we consider the impact of the stimulation efficiency (how
much of the fractured stage was effectively stimulated) and fracture conductivity. Be reminded that we
considered 100% stimulation efficiency for the base line case. Figure 11a presents the effect of lower
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stimulation efficiency in the type well. One thing one should notice almost instantly from this figure is that
stimulation efficiency can impact early-time production thus hurting project economics and return on in-
vestment. Evidently, the choice of 100% efficiency for the base line model seems appropriate; however, it
raises the question whether this assumption makes sense. As explained earlier, we concluded, based on both
production data simulation results, that well OW-1 is an excellent performer in the area under study, there-
fore it is physically sound that this well may exhibit ~100% stimulation efficiency.

With respect to fracture conductivity, we concluded from Figure 11b that conductivities beyond 200
md would deliver the same performance compared to high-conductivity fractures. Once again, it makes
sense that the calibrated model yielded a moderate fracture conductivity (200 md-ft) given that well OW-1
enjoys of high production performance compared to other offset wells in the area. Yet, notice that, if that
was not the case, low fracture conductivity would have posed a detrimental impact on early-time produc-
tion, thus having potentially jeopardize return on investment and financial projection for this well. This
effect can be confirmed by the relatively high variability in the decline rate envelop at relatively early times.
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Figure 11. Impact of completion properties: (a) stimulation efficiency and (b) fracture conductivity

Impact of SRV Properties. The impact of SRV porosity and permeability on well productivity are shown
in Figure 12a and 12b, respectively. To begin with, recognize that the effect of SRV porosity on production
appears to be more severe than that of matrix permeability (Figure 10a). For the lower-bound case, we
assigned both matrix and SRV the same porosity, otherwise it would be challenging to defend SRV perme-
ability being lower than matrix porosity. In this case, the combined impact of low porosity values on well
productivity could surface at mid-to-late times (> 1 year of production) and its impact could reduce EUR
estimation by 22%. Contrariwise, the upper-bound case, which considers matrix porosity and SRV porosity
to be 8% and 12%, respectively, would deliver a production overestimation of 39% with respect to the base
line case. In conclusion, similar to matrix porosity, incorrect estimation of SRV porosity can potentially
lead to a sensible variability in EUR calculation, from 22% underestimation all the way to 39% overesti-
mation.

Regarding SRV permeability, Figure 11b shows that this parameter influences early-to-mid-time pro-
duction. This is a logical conclusion given that most of the production from multi-fractured horizontal wells
comes from the stimulated rock volume, as indicated by the unit-slope trend exhibited by both production
data and simulation results in Figure 7b and 8b, as well as the linear trend observed in Figure 7c and 8c.
Interestingly, it appears that, regardless of SRV permeability, EUR estimation should not be as largely
impacted by this parameters as it is by matrix and/or SRV porosity. This is due to the fact that SRV
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permeability only controls the speed at which oil is produced from the well; the ultimate amount is dictated
by the pore volumes of fluids that are able to escape from the reservoir into the wellbore, and this quantity
is directly controlled by porosity. Nonetheless, early-to-mid-time reservoir economics may be either fa-
vored or adversely affected by SRV permeability, particularly rate of return and similar economics metrics.
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Figure 11 — Effect of (a) geomechanics and (b) hydraulic fracture conductivity on type-well performance

0.0

Impact of Geomechanics. At the beginning of the paper we emphasized on the formation being overpres-
sured and presumed that geomechanics would play a major role in productivity from wells in the formation
of interest. However, as explained in the reservoir model validation section, geomechanics effects were
neglected, i.e. permeability was assumed constant, yet we were able to accurately history-match production
history from well OW-1. Here, we considered that hydraulic fracture conductivity and SRV permeability
are pressure-dependent and follow the exponential law model in Eq. (2). Furthermore, given that the SRV
is mostly composed of unpropped fracture networks (Mayerhofer et al., 2010) that would tend to close
faster than propped fractures (Zhang et al., 2014; Yao et al., 2016), we assigned permeability modulus of
the SRV to be twice as much as that of the hydraulic fracture (i.e. y; = 2yy).

The fact that the SRV and hydraulic fracture have distinct permeability moduli would make the ap-
plication of the FRF model very difficult for analytical models. Nonetheless, this was not an issue for this
study, because the nonlinear solver from ADA FALCON admits the use of distinct pressure-dependent
correlations for permeability for the various regions of the FRF model, even if the correlations themselves
are different. For instance, ADA FALCON allowed us to test different correlations for the hydraulic fracture
than for the SRV, and simulation results were delivered without major issues. This demonstrates the power
of the Al component within the solver that allows to run very complex simulations while accerelating con-
vergence rates and maintaining the numerical stability of the solution.

Figure 12 shows that the effect of geomechanics was indeed absent from well OW-1. Note that the
actual decline rate and cumulative production curves are located outside of the geomechanics envelopes. In
any case, we can conclude that geomechanics has a tremendous impact throughout the productive life of
the well, even from early-to-mid times, leading to a 6% (for moderate pressure dependency) to 20% (for
strong pressure dependency) reduction in EUR due to SRV permeability being destroyed with pressure
decline.
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Artificial Intelligence (Al) for Drilling Optimization

Once the drivers for reservoir productivity are identified from the physics-based Al model, the planning
phase of new wells are improved by targeting specific, well defined prediction targets in real time. In this
case study the Al model is trained from offset well data and the outcome from production module.

The real-time prediction capability is built by the integration of several machine learning models that
constrain and guide the wellbore trajectory and drilling parameters in real time. Two specific targets for the
drilling phase are to achieve the optimization of rate of penetration and the automated wellbore trajectory
positioning in the areas of the reservoir that lead to greater completions efficiencies and therefore higher
reservoir productivity.

Optimizing the Rate of Penetration. A successful Al driven automation is always a model that is trained
for the specific challenge and with the assessment from the drilling expertise or domain knowledge. Several
factors are considered to develop a comprehensive model prediction to determine optimal rate of penetra-
tion (the output) by use of drilling parameters (input).

In this case study, optimal ROP is defined as any ROP achieving above-average performance from
the historical data set collected. One must ensure the data collected includes only the best performing wells
drilled so the average acts as the datum for which any ROP achieved above represents improved perfor-
mance. Establishing an average also ensures adequate data is represented above and below the performance
KPI so the model can be adequately trained with enough data to achieve good accuracy with limited number
of wells required.

Data Preparation and Model Prediction. Data preparation started with establishing a sorting criterion that
ensured an “apples to apples” comparison when analyzing the data through the modeling process. Such
information to establish this backdrop included:

Rig equipment limitations (torque, rpm, pump pressure)

Mud program (MW & PV)

Well type and directional requirements (drag effect)

Formation characteristics (US, elasticity, chemical composition, minerology)
Bit information (type, material, cutters).

In addition, we determined that the data should also be free of incidents which may have occurred related
to any torque, drag, vibration, or violation of hydraulic pressure in the wellbore. This ensured the end-result
parameter suggestion is free of any data that may resulted in a violation of a safe drilling envelope.
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Once the data was sorted, we cut-out any sliding intervals so only drilling ROP is examined without
introducing any bias into the dataset (Figure 13a). Sliding can contaminate the results simply by the goal
of sliding being different than that of drilling — i.e. sliding leans toward directional control vs. that of
achieving higher ROP which is the goal when drilling. Erroneous data points (sensor noise, bad measure-
ments) were also removed wherever deemed necessary and signal smoothing was applied on the raw data
in order to filter out potential data outliers, as shown by Figure 13b.
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Figure 13 — ROP filtering and smoothing process

Once the data set was ready, we established what factors had a direct effect on ROP (at the bit face). This
step will setup the inputs toward the model prediction. Factors include:

e Dirilling parameters

¢ Bit information

e Motor configuration (if applicable)

e Cumulative tortuosity

As illustrated by Figure 14, the variables extracted from these factors are then feature-ranked by random
forest to determine which have the largest effect on ROP. The process allows the user to choose as many
variables as desired and observed their ultimate effect on ROP. In this study, we determined a set of 7
variables that had the largest impact on ROP on all the offset wells used for this analysis.
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Once the variable ranking was completed, we moved into the modeling phase by virtue of the imple-
mentation of an artificial neural network (ANN), based on a classification problem. Basically, what we
intended to do was to classify ROP data, depending on whether their value was above or below a certain
threshold, such that Class 1 data complies with ROP > ROP,,; whereas Class 0 falls into the range ROP <
ROP,,, (Figure 15). An example of the execution of the classification algorithm is presented in Figure 16.
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Figure 15 — Neutral Network modeling process

Based on the chosen set of variables which has the greatest impact on ROP, as confirmed from data evalu-
ation, we performed the Al-based modeling for each formation drilled, to include any cases where motor
and/or bit characteristics would have occurred. The conclusive results yield that, on average, using the
proposed Al procedure, high accuracy for ROP prediction was achieved, which was in the order of 95%.

The next step, and one that poses more challenge, is to convert the variables (inputs) used in the model
into something practical that drilling engineers and operations staff can use, both in the office and field, by
way of common drilling parameters monitored on the rig floor as well as remotely, while also allowing an
acceptable minimum and maximum threshold per parameter to account for any deviation that may occur
during the drilling process (ex: flowrate reduction due to mud pump repair).
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Figure 16. ROP datum from offset well data set

In the light of ROP optimization by virtue of Al, real-time management of the variables impacting ROP the
most requires the simultaneous interaction of several, if not all, of these parameters. The simplest case was
the scenario where ROP depends on only one of these parameters. In this case, a 1-D variation of ROP with
respect to this parameter would result from the analysis, as shown in the first enclosed schematic on Figure
17. Note that all parameters would produce a similar plot, thus the viability of using a single parameter for
optimization purposes may not be as straightforward nor physically meaningful.

The second case we developed relates to the mutual interaction between two parameters. This study
yielded a 2-D heat map which gives a region within which the highest ROP would be seen, as shown in the
second enclosed schematic on Figure 18. Although this was a significant improvement over the 1-D varia-
tion approach, still we got different trends and heat maps for different combinations of these properties.

Finally, we run a 3-D variation model to capture the drilling parameter ‘cloud which yielded the
optimal ROP setting at any given depth and formation in the target well. It is important to recognize that
moving from 1-D variation to 3-D increases the accuracy of the ROP prediction; however, the complexity
of the prediction model increased substantially as more variables were compared in the same volume.

30 - VARIATION

2D - VARIATION

10 - VARIATION

Figure 16. 3-D view of the ROP optimization process
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In the end, we evaluated the simultaneous action of the 7 variables for ROP optimization. To do so, we
relied on a cloud-based server to carry out the simulations with parallel computing and multi-threading
technologies. As a matter of fact, we observed a substantial speed-up of the machine learning process after
implementing multi-processing and multi-threading tools, in a way that we believe feasible to execute this
type of optimization analysis with Al and machine learning while drilling; that is, near real-time drilling
optimization.

In practicality, the validation and test of results showed a decline in the accuracy by up to 20% when
testing the model with offset wells we solely used for testing, not training, purposes (Figure 18). Yet, 80%
accuracy means that 80% of the time that the drilling crew follows the recommendation given by the Al
model and parameter schedules are followed, the optimal ROP window will be achieved. More importantly,
as mentioned earlier, following automated drilling parameters in real time, delivered via web-based visual-
ization, will enable cross-platform drilling optimization on a single cloud-based ecosystem. In this manner,
field personnel, service companies related to the wells under analysis, geoscience and engineering teams,
and E&P management can all participate in the same process and delineate better practices for Al-based
optimization and real-life field operations.

|
i
L ] | "ﬂmpl‘

W

-

Figure 17. Testing and validation for schedule generation using data from offset wells

Conclusions

This paper introduces the concept of cloud-based ecosystem development and integration for increasing
opportunities for optimization in the upstream value chain. Five main components were presented: produc-
tion forecast for type wells, drilling optimization, completion design optimization, petroleum economics,
and real-time Al-enhanced, or assisted, decision-making. The philosophy behind this approach is to inte-
grate all the disciplines involved in the upstream oil & gas business and get them to look at the same data
from different perspectives, with the unique goal to get the most out of a certain asset. Given the broad
aspect of the proposed cloud-based solution, we decided to focus this paper on Al applications for accurate
physics-based production forecasting and drilling optimization.

Two potential application for Al were discussed. Firstly, we introduced the notion of reservoir char-
acterization via offset production data analysis to determine the key drivers of production in the formation
and further characterize static reservoir and completion properties. The goal of this part of the study was to
utilize physics-based reservoir models, improved with Al algorithms, to forecast production from the target
reservoir accurately. Unlike typical DCA methods, that could be considered inappropriate for unconven-
tional reservoir studies, we demonstrated that a poor understanding of the impact of physical quantities,
such as static reservoir and completion properties, on well performance can result in up to 40% overesti-
mation of EUR which, at the same time, would deliver over optimistic reservoir economics expectations.
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Second, we examine the utilization of Al methods for drilling optimization, more specifically ROP
optimization. We introduced several data analytics techniques, such as data filtering and data quality check,
along with an ANN for ROP classification based on threshold values. We observed that, amongst the full
set of parameters influencing ROP in offset wells, there were 7 parameters that had the most influence in
the resulting ROP. From this finding, we constructed different modalities for ROP optimization, including
1-D, 2-D and 3-D approaches. In fact, we went as far as using the 7 parameters in the multi-dimensional
space to determine the multi-dimensional groups where ROP is the optimum. However, we observed that
in despite our Al model delivered accuracies as high as 90%, the accuracy dropped when we tested our
model with other offset wells not previously used in the training process, i.e. test data. Nonetheless, the
accuracy levels stayed around 80%, such that ROP would lie within its optimum multi-dimensional space
should drilling personnel follow the recommendations of the Al algorithm to adjust one or various param-
eters, as required.

The other applications proposed in this study, i.e. completions optimization, petroleum economics,
and Al-assisted decision-making processes, are still work in progress. The reader should be aware that the
adoption of cutting-edge technologies and modern methodologies, as the one discussed in this paper, by the
oil and gas industry can be slow and depends on the level of adoption E&P companies are willing to let in.
Yet, we expect that given the current oil and gas markets as well as the global situation due to the COVID-
19 pandemic will accelerate the adoption process henceforth opening more opportunities for field testing
Al applications in the upstream value chain.

At the end of this work, we highlight that integration of domains in the upstream value chain is es-
sential for operational efficiency and cost optimization. The integration also drives a holistic production
enhancement by proactively making production-driven decisions during drilling and completions. Like-
wise, automated drilling and completions operations are achieved in real time by incorporating tailor made
Al training models into the operations and with the goal to achieve KPI’s define by the production data
analysis model given by type-well analyses.

Ultimate return of investment efficiency is achieved not only by the reduction of operation cost during
the drilling and completions operations. A proper production data analysis to optimize production in the
target formation to achieve higher return on investment by implementing a production-driven execution of
other processes, like drilling focused on production ‘sweet spots’ while staying in zone, engineered com-
pletions designed in real time, and petroleum economics forecasting from type-well studies.
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